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AN ALYSIS OF TSE VARIOUS METHODS USED TO ANALYZE

RADIATION FROO1 THE THIN WIRE I-FIELD TEGRAL EQUATIO

I Tapan K. Sarkar

ABSTRACT

In this paper we analyze the numerical aspects of the various methodso that have been used to analyze thin wire antenna problems. First ye derive
som properties of the thin wire E-field integral operator. Based on those

0 properties we unify the various iterative methods used to find current distri-
bution on thin wire structures. An attempt has been made to resolve the ques-
tion of numerical stability associated with various entire domain and subdo-
main expansion functions in Galerkin's method. It has been shown that the se-
quence of solutions generated by the iterative methods monotonically approaches
the exact solution provided the excitation chosen for these problems are in
the range of E-field operator. Such a statement does not hold for Galerkin's
method since the Inverse operator is unbounded. Moreover if the excitation
function is not in the range of the operator the sequence of solutions form an
asymptotic series. Examples have been presented to illustrate this point.
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I. INTRODUCTION

Over the past thirty years several methods have been developed by

various researchers to analyze scattering and radiation from thin wire

structures. In this presentation we investigate the properties of the

integrodifterential equations by various techniques which impose boundary

conditions on the electric field only. Se we restrict our discussions to

the E-field integral equation.

For simplicity let us focus our attention on the reradiation of

electromagnetic waves by a thin wire of radius a and of length L centered

at z - 0. In this analysis we will assume that the antenna is quite thin

and hence the circumferential variation of the current on the antenna

can be neglected. We shall also neglect any component of the current

on the structure. Furthermore, there are no internal resonances of the

thin wire at the frequency of operation. With these assumptions we

derive the properties of the E-field operator for both the Pocklington

and Hallen's equations.



2. PROPERTY OF THE POCKLINGTON E-FIELD OPERATOR

By assuming a time variation of the form exp (jwt) the Pocklington

integral equation for the current on the surface of antenna can be written

as[1

+L/2 '2w 2 +L/2 2w

k2 I dz' do I(z') G(Z,z') + L 2  f dz' fd# 1(z') G(z,z') - -Ju4weE (z)
-L/2 o 3e -L/2 o

for- L L (1)

1 exi (-ikR)(2
where G(z,z') 1 K (2)

R = V (z-z')2 + 4a2 sin2  (3)

E I(z) - incident field on the antenna (4)

In the operator form (1) can be written as

PI k2 P I+P 2 I-V (5)

We next investigate if there exists a constant C independent of I such

that [2, p.2961

P ~IW " w I _ . max IlPIli 1 c (6)

ll11l Ill - 1

If such a constant C exists which is the maxim. of all possibl e I[PIlI

with the constraint II IIIl - 1 then we say the operator Is bounded with

respect to that norm 1( -(. The norms that we shall be dealing with are

the ?2 norm and the Chebyehev norm The norm is defined as

IL/2 2 (7)
11J(2)12 dsel1 2 (7

-L/2

-2-
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and the Chebyshev norm is defined as

- max L JI(z)f (8)
T L < <

When no subscripts are used either norm is implied. If

we are using the @y2 norm then we are restricting the domain of the oper-

ator P to elements which are in 2 (or square integrable). This does not
L

imply that I(z') cannot be infinite within the range - h < z' < + it
2 - - 2

However only those type of singularities are permitted in I(z') which are

square integrable. Any function which is not square integrable is ex-

cluded from the domain of P (as they are not in Y2). On the other hand,

if we use the Chebyshev norm then the function has to be bounded. Under

the Chebyshev norm any unbounded function cannot be in the domain of the

operator. Thus the function log z is inX but not in the domain of func-

tions bounded under the Chebyshev norm. Physically then convergence of a

sequence of functions under the e norm yields least squares convergence

whereas convergence under the Chebyshev norm yields pointwise convergence.

zamination of the first part of the integral in (1) reveals that

the ksrnel has a singularity which can be observed by rewriting the kernel

as (3, p. 1411

2lW 2w

fd# G(,,z,) . j f .. .Js d, -log Is - z'I + G (9)
o 0

where G contains terms which are bounded and hence square integrable.

The singularity of the kernel in Pl Is manifested through the function

lot Is - e' . Since a lograthmic function Is square Integrable we find

-3-



+L/2 +L/2

liPIl I [Idz j dz' (1,o Iz-z'I + C22  1/ 2 - c <- (10)
- -L2 -L 2 2

where C Is a constant. Hence P1 in bounded under the :2 norm. Furthermore

P1 is a Hilbert Schmidt operator as it has a square integrable kernel

[2, p. 352]. It can also be shown that a Hilbert Schmidt operator is

a compact operator [2, p. 3531. Under the Chebyshev norm

+L/2 +L/2

maxdz'log 12sl + [112j

-2

max I(z+P lo(z + p + z) log (1±.z) - LI+ constant

L<z <L
2  2

< M (a constant) for all - L <z<+L (11)
2- - 2

Hence the operator P1 is also bounded under the Chebyshev norm.

Next consider the second integral in (1). We have

+L/2 +L/2

2- _ : a {loglz-z' + G
ax-L/2 3: 2 -L/22

.... (12)

where the bar over the second integral represents a principal value. It

Is clear that the operator P2 in (12) is unbounded under the Chebyshev

norm, because is unbounded an z - + Thus there exist no

castaat C for all - < a < + such that
2 2

lIlP211T~ < C <'a

-4-
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Also the operator P2 is unbounded under the X 2 norm as 11 , and

{Jog Iz - z'I + G2 are not square integrable.

However if the antenna has no edges (i.e. a is everywhere bounded

and square integrable) then it can be shown that the operator P2 is bounded

under the 2 norm. Sneddon has shown through Theorem 8 [10, p. 234] that
L L

if f(z) is square integrable over - L < z < i and zero everywhere else

then the formula H(z) = - 'dz f (t) log dt

defines almost everywhere a function Tu(z) which is also square integrable, and

Ilf(z)IIX 2 - IIiH(z)II 2

Hence if the antenna has ao sharp edges then the operator P2 is bounded

under thex 2 norm as illustrated by the above theorem. In other words,

if the antenna has end caps then the Pocklington E-field operator is bounded.

Hence the Pocklington E-field operator, P - P1 + P2 is unbounded if

the scatterer has a sharp edge at which the charge density becomes

infinite. However if the antenna structure is quite smooth, so that at

each point the tangent to the surface can be defined uniquely, then the

Pocklington E-field operator P - P1 + P2 is bounded under theC
2 norm.

Next we consider the Hallen e-field operator.

3. PROPERTY OF THE HALLEN E-FIELD OPERATOR

Hallen transformed Pocklington's equation as given by (1) into the

following integral equation

+L/2 27
f dz' f d I(z')G(z,z') - D cos kz + F sin kz +
-L/2 0

z
J f 9 (z) sin k(z - z') dz' (14)

-L/2

-3-
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where D and F are constants which depend on how the current goes to zero

at the ends of the antenna. We define the Rallen E-field operator as

+L/2 21

HIm f dz' f d* I(z') G(z, z') - P1 I [from (1)1 (15)
-L/2 o

H once the operator H is bounded both under the e and the Chebyshev norm.

Also H is a compact operator under the , norm.

It is important to note however, that the unknown I(z') is hidden in

the constants D and F. To illustrate this further, if we consider a delta

gap excitation for the antenna then (14) becomes [4, p. 325]

+L/2 2w

f dz' f d I(z') G(z, z') - A sin k jzj + D cos kz
-L/2 o

where A is a known constant and D is unkown. Observe at z - 0

+L/2 2r

D I- f dz' f d I(z') C.(o, z')
-L/2 o

If the operator H is bounded so vii be the constant D. If one wishes

then perhaps one can transfer D to the left hand side of the equation

and thus form an additional part of the operator H. But since D is a

part of the operator H, whatever bounds hold for R also hold for D.

Next we estimate a bound for I Jll both under the e and Chebyshev

norm.

We observe

+L/2 2wmaxl ' _____.d__'d ee(]ll
f L fdSzs+L L d (-kR)

T L-- S+k , -L/2 -oR
2 2

-6-
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max +L/2 2W
< f dz' 1L L 2w fz fd$ -i-

-L_< < + -L/2 o
L 2L 2

max [2 log, log-I + @(a 2) [3, p. 144] (16)

where Q (a 2  denotes terms of the order of a 2 . Now 4f L >> 1 then
.a

IiIi < 2 log- (17)
T a

2
Under the X norm

+L/2 +L/2 2r exp(-JkR) 1/2

I IHI2 < If dz f dz' { f do  2rR
-L/2 -L/2 0

+L/2 +L/2 2w 1 2 1/2
<[ dz f dz' fdo -}]

-L/2 -L/2 0

L L

S - log a] + other terms (18)
- a a

The above integrals may be evaluated numerically to give a more accurate

estimate for 1I II .

As R is bounded operator unlike P, it may be computationally much

easier to solve Hallen integral equation than Pocklington integral

equation.

4. SOLUTION OF HALLEN E-FIELD INTEGRAL EQUATION

4.1. By Iterative Methods

It is well known that if H is a compact invertible operator (under
2

A norm) on an infinite dimensional space then its inverse is often

unbounded [3, p. 353]. Hence the problem of the solution of (14) in the

/

-7-
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2 2
norm is ill-posed. If a problem is ill-posed under theX norm then

it is definitely ill-posed under the Chebyshev norm. However it can

be regularized in the following way. We take (14) and cast it in the

form

HI = Q (19)

and generate the sequence {I }
n

I a [U -TH] In-l + T Q (20)

with a starting guess of I 0 Q and U is the identity operator. The0

sequence I generated by (20) converges to a solution I which satisfiesn

HI - Q for all Q in the range of H [1, p. 196]. The sequence generated

by (20) always converge to I provided

[I H] I I]1 < 1

or ITi I =I lIt -u+U II - IIU - T H11 + IhUI < 2

or 1Jj I (21)
TT 2

2
In (21) Itl I could be either the .r or the Chebyshev norm depending

on the type of convergence desired. For all values of 1 >iT[ 2

and Q in the range of the operator H, the iterative process defined by

(20) will always converge monotonically to a solution I(z'), if it exists.

This has been shown in Theorem 2 (in the appendix). By the terms of

Theorems 1 and 2, the iterative process will converge for any starting

value I if
0

1lRhlje2 1_L_
2 or 1 : e21klog L) (22)

a a



(when convergence is desired in X 2 norm); and

1 lilY 1 - L
> or a o (23)TT IT 2 i T a

(when convergence is desired in Chebyshev norm).

Observe if a 2 solution is desired and one chosses T according to (23)

it is quite possible that the iterative method described by (20) may

not converge at all. Therefore if we are solving for the current distribution

on a thin wire due to a delta excitation the value of r chosen should be
L L L

S[- log -] instead of the popularly used value of T = 2 log - This is
a a a

because the current has a logarithmic singularity at z = 0 and so convergence

2
of the various iterations can be guaranteed only in anX sense.

Hallen in his classic iterative scheme chose the value ofr as given

by (23) [3, 4]. A detailed description on how D is solved for at each

iteration is described in detail '4, p. 3261. Observe that if > 2

or llU - T HII < 1 then the iterations defined by [(8.149) and (8.150) of

[4] would always converge for any starting guess 10.

Other researchers have chosen different values of T. For example

Gray [5] chose

Real [2 log-- 2y - 2 log J + 2Ei JL ] (24)
T a l 2

where y is Euler's constant and Ei is the exponential integral. King

and Middleton [6] decided to make
L/2

l f G(-X z
S G(L , z') sin kz' dz'. (24.a)
0

Whereas Siegel and Labus [7] chose

-Au 2 log k -Cin (kL) -1 -sinkL (25)
T a U9

-9-



Where Cin is the special form of the cosine integral. Finally Schelkunoff

[3] after a careful analysis decided

-. 2 log L Cin(kL)-1 - -j Sin(kL) + j -c---(25.a)-T- a- UL UJSnk)+Jl~Lk(5a

In general, it really does not make any difference whatsoever, what

value of T one chooses, one is guaranteed to have pointwise convergence

or convergence in the mean depending on whether one chooses T according

to (23)or (22). This of course assumes that a solution to the problem

exist, i.e. Q is in the range of H.

In sum ary, the iterative method convert HI = Q, a Fredholm equation

of the first kind to In = B InU i + TQ, as Fredholm equation of the

second kind. The advantage of the equation of the second kind is that

jI(u - B111 is not only bounded but its inverse flII - B)-1lis also

bounded, provided unity is not an eigenvalue of B. Mathematically one

has regularized the problem by the introduction of the parameter T.

With this regularization scheme the convergence of the sequence I isn

monotonic.

Finally, we conclude by noting that as the iterative process

continues the unknown constants D and F in (14) are determined as out-

lined in [4].

4.2. By Galerkin's Method

The next generation of the methods were developed primarily by

Harrington [8] under the generic name of "moment methods." This very

popular versatile method has been excellently documented in [8]. In

Galerkin's method, the unknown function I is expressed as

-10-



N

IN (z) - ai (z) (20)

where VW(z) are known functions which may extend from - < z< + or

could span only a partial portion of the domain of z, i.e.
LL

< + -1. In the former case TI's become entire domain

functions whereas in the latter T' 's are called sub domain basis functions.

We solve for I (z) by solving for the unknowns a i in (26). We also
n

convert the infinite dimensional problem HI = Q to a finite dimensional

problem by replacing I with I , i.e. we solve the following equation

N
Wi - Q in the finite dimensional space spanned by the basis

i-l

functions T' i - 1, 2, ..., N. We next find a unique solution in finite
N

dimensional space by weighting the residual a i - Q to zero in
i=l

the following way

N
XCi <H'Y, =j> <Q, 'T > for j = 1, 2 ..... N (27)

In a matrix form

[G] [a] - [V] (28)

where [G] - [<li, T i>]

[V) - [<Q, Tj>]

and the inner product is defined as

+L/2
q~t > f dz W W<*i' *j> = -L" dz,(z) *j(z)-L/2

The unknown a 'a in (28) are obtained as

[a] = [GI-1 [Z) (29)

-11-



The next question that normally arises in whether the sequence IN defined

in (26) approaches any limit I as N --. And secondly whether I satisfies

the equation HI - Q. We cannot talk about convergence in the Chebyshev

metric [as defined in (8)] because a Chebyshev norm cannot be derived

from an inner product [2. p. 272]. In other words in an inner product

space we cannot define a Chebyshev norm. Hence we shall be talking about

only the i norm for Galerkin's method. So we shall be discussing about

convergence in the mean. Galerkin's method guarantees the weak conver-

gence of the residuals [from (27)], i.e.

Lt <S'N - Q, Y > - 0 for j - 1, 2 .... N, (30)

However if H is a bounded operator (i.e. I HI Ia2 < a constant < -) then

(30) implies strong convergence of the residuals, i.e.

Lt III I Q 0 (31)

This has been proved by Hikhlin [9]. Physically, (31) implies that as

N b O, the tangential electric field on the surface of the conductor

converges to zero in a least squares fashion.

Unfortunately in Galerkin's method the ccnvergence of the residuals

to zero in (31) does not imply the convergence of TN to a solution I of

HI - Q. The convergence of IN I in the domain of H is possible if and

only if l- Ij112 is bounded, as

"IN I~, 111 ' I - I 1113 QI 2  (2

SO if I 1- 1  2 is unbounded, even though the residuals go to zero, the

sequence of solutions IN may not converge to 1. This is in contrast to

-3.2-



the iterative methods where monotonic convergence to I is guaranteed if

T and Q are chosen as prescribed.

Since IIH' I1_.2 is unbounded in this case, the application of
Galerkin's method to HI - Q may not guarantee that I Ii - I1 1 0 as N .

In other words, there is no quantitative way to describe the convergence

of IN - I as various expansion functions are chosen for Yi. Hence we

address the question: For a fixed order of approximation N, h w should

one choose a set of expansion functions Ti such that the round-off and

the truncation error in the numerical computation of a in (29) is a

minimum?

Suppose the Gram matrix E is generated by the basis functions

[Eu " <YV T >1 then we show in the appendix (Theorem 3) that

cond [G] < cond [H]. cond [E] (33)

i.e. the condition number of the Galerkin matrix G in (28) is bounded

by the condition number of the operator H in the finite N dimensional

space and the Gram matrix E. Equation (33) is valid only in the finite

N dimensional space spanned by i . It is important to note that even

though H may not have any eigenvalues in an infinite dimensional space,

it has at least an eigenvalue on a finite dimensional space [2, p. 3321.

If the homogeneous equation HI - 0 has only the trivial solution I - 0 and
A

JJI jx2 is bounded then cond [H] < - and the inequality in (33) has some

meaning because the right hand side of (33) can never be infinity.

So (33) directly implies the following: i) Use of an orthonorsal

sot of basis functions 'T for the current implies

A

cond [C] c cond [H] (34)

.. .. ... .7- -



I.e. the problem would not be worse conditioned as the original problem.

For this case cond [El - 1. This will happen for subdomain basis functions

like pulses or entire domain orthonormal basis functions like F- Sin m z

for m - 1, 2, .... , . (34) also implies that the solution of HI = Q by

Galerkin's method in a finite dimensional space may be a better conditioned

problem than the original problem posed in the finite dimensional space N.

This definitely should be a very strong point for Galerkin's method.

Also from (34) there is no way to tell whether the Galerkin matrix

G associated with the entire domain basis functions would be more ill-

conditioned than the Galerkin matrix associated with the pulse functions.

ii) Use of subdomain basis functions like triangles or piecewise

sinusoids may deteriorate the condition number of the Galerkin matrix

[G] than that of the original problem. This is because cond [E] > I for

these cases.

For the case when 'I 'a are chosen as piecewise triangles, then E

is a tridiagonal matrix of the form

Q PQ[OQP.
where- and Q - and Az - L Since the Jth eigenvalue

of a tridiagonal matrix is given by [1, p. 701

A a P + 2Q cos (OW )

j

we have

coud [i) +2 IQ 3 (36)
triang e97 lPI - 2 IQI

-14-



Hence for all dimension 4 the Galerkin matrix due to piecewise triangle

expansion functions may have a condition number which at most can be three

time as that of the original problem, i.e.

cond [G] < 3 cond [R]

For the piecevise sinusoids however,

2k Az - Sin 2k Az dQ Sin k A z - k A z co k A z (37)
2 2~2k Sin k A z 2k Sin2 k A z

where k - 2r . In this case cond [El is bounded by
wavelength

Cond [E] < 12k A z - Sin 2k , zi +.2 ISin k A z - k A z cos k A zi

Sintaoids 12k A z - Sin 2k A zi - 2 ISin k A z - k A z cos k A zi

..... (38)

In the limit A z -' 0

cond [] < 3 (39)

Sinusoids -

Thus (39) Implies that as the dimension of the problem becomes large the

Galerkin matrix due to piecewise sinusoids are no less numerically ill-

conditioned than the matrix produced by piecewise triangles. It may be

quite possible that for a particular value of X the Galerkin matrix due

to piacewise sinusoidal functions may be better conditioned than that of

the piecewise triangles or even than that of the pulse functions.

In the above analysis an attempt has been made to provide a worst I
case theoretical bound for the condition number of the various matrices

of interest.

It is Important to stress that the problem we have addressed here Is

~-13-



not which set of basis functions would provide the best approximation

for the current, but which type of expansion functions would give rise to

a well conditioned Galerkin matrix G which will be easy to invert numerically.

This is because truncation and round-off error associated with the solution

of (28) is directly related to cond [G].

5. IS A SOLUTION POSSIBLE IF THE EXCITATION IS NOT IN THE RANGE OF THE

OPERATOR?

We discuss the question of existence of a solution for the current

on the antenna structure when we try to excite it with a source which is

not In the range of the operator H. Clearly, if the excitation is not in

the range of the operator then mathematically a solution does not exist.

But numerically one could always find a solution to the integral equation.

This numerical solution has some very interesting properties as outlined

in Theorems 4 and 5 (in the appendix). If we try to numerically solve

an integral equation HI - Q with Q range of H, then the sequence of

solutions IN diverges even though the residuals HLN - Q associated with

HI - Q may approach zero monotonically. This has been proved in Theorem 4

of the appendix. In theorem 5, we develop further properties of the

solution IN. There we prove that the sequence I indeed form an asymptotic

series. The asymptotic series has the property that it converges at

first and then as more and more ters are included in the series, the

eries actually diverges. Even though the theorems 4 and 5 have been

proved for the Iterative methods, they are also valid for Galerkin's

method. We now present some examples to illustrate when Q is in the

range of operator and when it is not.

As & first example consider the radiation problem where an antenna

of length L and radius a is excited by a delta gap at the center. The

corresponding allen's integral equation has the following form (4, p. 3211

+9./2 2w
Id' s do(s') C(s, s') a A Si k 1s1 + D coo k a
-L/2 0



where A is a known constant and D is unknown. It has been shown by Wu

[4, p. 3221 that the solution I(z) of the above equation has a logarithmic

singularity at z - 0 given by

I(Z) - - J a V [log 1 + .... j

120w IzI

Hence 1(z) to the delta excitation is square integrable but is not bounded.

So the delta function excitation would be in the range of the operator
2

if the norm is used. The delta function excitation would not be in

the range of the operator if the Chebyshev norm is used.

As a second example consider the scattering from a wire of length L

and radius a irradiated by a broadside incident plane wave. In this

case the integral equation would be of the form

+.12 2:
f dz' f dO 1(z') G (z,z') - D cos k z + F Sin k z + Y

-L/2 o

where D, F and Y are constants. By superposition principle there must

exist a current iL(z') such that

+L/2 2r

f dz' I d$ (z') G(zz') - a constant

-L/2 0
4L/2 27 dtly(s')
" dl' J zr G(zs') -0 (40)
-LI2 0

If we assume that the function iy(z') Is square integrable then we

can ezpand

k
a % ?,(s (41
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where Pk(Z) - I for ak < a < zk+l

- 0 otherwise

By substituting (41) into (40) yields

V. +L/2 2w

I ak f dz' I d, [G(z, zk) - G(z, zk+l)] - 0

k-l -L/2 0

2
Since G(zzk) 0 G(zzk+) then cik - 0 for k - 1, 2,...., N. Hence an

solution does not exist for this problem. However if we impose the
L

additional constraints I(± L) - 0 then D cos kz + F Sin kz + Y may become

an element in the range of the operator.

Whether in fact a forcing function is in the range of the operator

i difficult to verify both theoretically and numerically. If a forcing

function is not in the range of the operator, theoretically we should

obtain a solution which diverges in an asymptotic sense. However this

postulate may be difficult to verify numerically for certain problems.

As an example consider the partial sum of the series

m-1+ 1+I + + ....+
s2 3 4+++.. N

The partial sum SN diverges as 9 - . This is because if we look at the

following M termn of the series we find

I 1 1 I> A> A+ A -+....+ 4 > .-

Mel ~N42 N~2po h 2t 1 2) t o e sa1 2)1 o

10-soevr if we program the seri"s on the computer sad ask the computer to

ZW I -W



give us a result when the addition of the N+l term does not change the

partial sum by 10- 10 (say) we would get a convergent result!

In conclusion, we must try to learn theoretically, as much about the

problem as possible. Numerical methods may be applied as a last resort

as it may be the only way to obtain a solution easily. The convergence

of the numerically computed results is determined to a large extent by

the theoretical analysis of the problem rather than apparent convergences

in numerical computations.

6. CONCLUSION

In summary, we have brought out the following features.

1) The thin wire E-field Pocklington integral operator is unbounded

whereas the Hallen E-field operator is bounded.

2) The inverse operator for Hallen E-field integral equation is unbounded.

3) A unified theory for the various iterative methods showing how

the Fredholm equation of the first kind has been converted to a Fredholm

equation of the second kind is presented.

4) The conditions under which the iterative methods converge both
2

for the 2 norm and the Chebyshev norm has been presented.

5) The monotonic rate of convergence of the sequence of solutions

associated with iterative methods have been established for certain

values of T and for Q e R(H).

6) The numerical stability in the solution of the matrix equations

for Galerkin's method for various expansion functions is examined and

7) The sequence of solutions IN forms an asymptotic series for both

the iterative end Galerkin's method when Q J R(H).

A =U0WIIDGD U1: Grateful acknowledgement is sade to Dr. Henry Nullaney

for his encouragement and interest, and to Dr. D. Wilton for msking

suggestions to improve this manuscript.
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8. APPENDIX

Theorem 2: For all Q e Range of U, the sequence I generated by the

recursion

I U [U- H I n -QA B I +Q' (A.1)

Where U is the identity matrix and I IT H I1< 2 with the initial guess I = Q'0

converges to I (the exact solution, if it exists) in the norm, i.e.C

lim (in - IsI -e 0 and the convergence is strictly monotone increasing,

i.e., 'k + e -

Proof: The A~erative process (A.1) converges as long as the norm of

B is less than one. It is clear that if ITI-IliHI < 2 then

I lt -'Flu- TH11 < 1. Now we have

Ie - In+l - I e - In

By taking the norm of both sides and simplifying

n+II11E- U+l e1 -<lsII - InI I <- {I I I} P I Ie - ol 1

Since fl IB < 1, as n- we have

_ I1lTe - 1+III - 0

and thus In+I converges to the exact solution.

That 1 t Ie is seen easily as

'Cn+1 l e - n.I

and

% a - In

are related by

'C+I - B

-21-



and so

I1C+1.I _ IBII I <l.l I I I I

and with equality if and only if en  0. It follows that if no is the

smallest integer for which IIE,.I I - e.11 then

e a -0 , for n > no and .lIIn+lI <.le n11 for n < n, i.e.

I t I and theorem 2 is proved.
n e

Theorem 3: Consider the operator equation HI = Q in a finite dimensional

space N. Let the unknown I be expanded Ain terms of the normalized basis

A X ma[H]
functions Define cond(H] = A in the given N dimensional

space.

Let cond[G] and cond[E] be the condition numbers of the Galerkin matrix

[Gij - <Hi, >1 and of the Gram matrix [Eu = <i, j>1 , respectively.

Then

A
cond[G] < cond [H]. cond (E]

N

Proof: Let I - a, 0i, then from [2, p. 341]
i-1

N N NI-'.x, .>- lI~ a-l% <H*i' ,> I< Hll'l < L i' I "itiHt" <EI,I>

A

since <lo> - I1112 we have

A

<11, >I< I

-22-
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from which it follows that
A

max [G II-Amax[E

Also since

k<H,>I Ili= 1i ill = > m.in t 112
- i -11 IA-11 -I I IA-11 I

from which it follows

X 1n[E],,A-11,
min[G]->

Hence we have

max[G] max (E ]

Xmin[G] Xmin [E]
A

cond[G] < cond[H], cond [E].

Theorem 4: If Q R(H) then the sequence of approximations I generated
n

by

In+1 - BI + Qnl n

with the initialization I M Q yields the following relationships
o

i) lir IR +1 - nR11 - 0, where R 1 HI - Q

and

ii) lim 1l11ll - -



Proof: i) We have

Rn+l -n - H( n+1 - In

and since the operator H is bounded [i.e. I IHI! < M] we have

llRn+1 - R 11 < M IIIn+1 - Inl_2 Iln+1 - EnIl

< M.JJB - Ull Ile_11 < . JIB - ulH" {(BlJ}I1LlEoi

Hence li IIR+l - R n 11 0 as lim {lBl!nJ} 0.

ii) If lim IIn 11 - does not hold, then we have lim lIlinil <

(i.e a bounded sequence). Thus there is a subsequence I' which is

n

bounded in norm. Now if we put the operator equation in a Hilbert space

setting (now we can only talk about the e2 norm only) and since a

Hilbertspace is weakly compact [2] one can always extract from I' another
n

sequence I" which converges weakly to some element I of the Hilbert
n

space, i.e. I" Y I. Also we have from i) lir H I Q (strong
n n n

convergence in norm). However as H is a bounded operator we have

lir H I" - HI
___w n

and also

lim H I n Q
n

Since the weak and strong limits of a sequence must concide, H I" - Q.
n

This means Q e R(R), a contradiction.

Theorem 5: The sequence I as derived in ii) of Theorem 4 indeed

forms an asymptotic series (i.e. for good accuracy the series has to be

truncated after a finite number of terms otherwise the results may be

worse).
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Proof: To demonstrate the source of divereence in I we assume

HI 0 Qo with I Qo + AQ

then

I- Ia- [B'10+ 0 - for n < 1In 0O [ anI n-i -

where n-1

n-l -o [B] i AQ
i-o

If Q0+ AQ J R(H) then by theorem 4, lirn I-111 ~ since

lrm Bjn I M 0. Observe that this holds irrespective of the size of
o

IAQI. Now the error in the iterates is obtained as

- - I~ = [B] n a ° -Cn Io In o- n-i

Note that the norm of the first term is monotonically decreasing and

thus it is evident that the algorithm should be terminated after a

certain optimum number of steps. Unfortunately the exact number of

iterations depends on the particular Q under consideration and the

growth rate of Ilon-1l versus the decay rate of II(BIn IOil.
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